U.S. ENVIRONMENTAL PROTECTION AGENCY NATIONAL EUTROPHICATION SURVEY WORKING PAPER SERIES

REPORT
ON
BOARDMAN HYDRO POND
GRAND TRAVERSE COUNTY
MICHIGAN
EPA REGION V
WORKING PAPER No. 186

PACIFIC NORTHWEST ENVIRONMENTAL RESEARCH LABORATORY

An Associate Laboratory of the

NATIONAL ENVIRONMENTAL RESEARCH CENTER - CORVALLIS, OREGON

and

NATIONAL ENVIRONMENTAL RESEARCH CENTER - LAS VEGAS, NEVADA

REPORT
ON
BOARDMAN HYDRO POND
GRAND TRAVERSE COUNTY
MICHIGAN
EPA REGION V
WORKING PAPER No. 186

WITH THE COOPERATION OF THE

MICHIGAN DEPARTMENT OF NATURAL RESOURCES

AND THE

MICHIGAN NATIONAL GUARD

FEBRUARY, 1975

CONTENTS

		Page
For	ward	ii
Lis	iv	
Lak	e and Drainage Area Map	v
Sec	tions	
I.	Introduction	1
II.	Conclusions	1
III.	Lake Characteristics	2
IV.	Lake Water Quality Summary	3
٧.	Literature Reviewed	8
VI.	Appendices	9

<u>FOREWORD</u>

ii

The National Eutrophication Survey was initiated in 1972 in response to an Administration commitment to investigate the nation-wide threat of accelerated eutrophication to fresh water lakes and reservoirs.

OBJECTIVES

The Survey was designed to develop, in conjunction with state environmental agencies, information on nutrient sources, concentrations, and impact on selected freshwater lakes as a basis for formulating comprehensive and coordinated national, regional, and state management practices relating to point-source discharge reduction and non-point source pollution abatement in lake watersheds.

ANALYTIC APPROACH

The mathematical and statistical procedures selected for the Survey's eutrophication analysis are based on related concepts that:

- a. A generalized representation or model relating sources, concentrations, and impacts can be constructed.
- b. By applying measurements of relevant parameters associated with lake degradation, the generalized model can be transformed into an operational representation of a lake, its drainage basin, and related nutrients.
- c. With such a transformation, an assessment of the potential for eutrophication control can be made.

LAKE ANALYSIS*

In this report, the first stage of evaluation of lake and watershed data collected from the study lake and its drainage basin is documented. The report is formatted to provide state environmental agencies with specific information for basin planning [§303(e)], water quality criteria/standards review [§303(c)], clean lakes [§314(a,b)], and water quality monitoring [§106 and §305(b)] activities mandated by the Federal Water Pollution Control Act Amendments of 1972.

^{*} The lake discussed in this report was included in the National eutrophication Survey as a water body of interest to the Michigan Department of Natural Resources. Tributaries and nutrient sources were not sampled, and this report relates only to the data obtained from lake sampling.

Beyond the single lake analysis, broader based correlations between nutrient concentrations (and loading) and trophic condition are being made to advance the rationale and data base for refinement of nutrient water quality criteria for the Nation's fresh water lakes. Likewise, multivariate evaluations for the relationships between land use, nutrient export, and trophic condition, by lake class or use, are being developed to assist in the formulation of planning guidelines and policies by EPA and to augment plans implementation by the states.

ACKNOWLEDGMENT

The staff of the National Eutrophication Survey (Office of Research & Development, U. S. Environmental Protection Agency) expresses sincere appreciation to the Michigan Department of Natural Resources for professional involvement and to the Michigan National Guard for conducting the tributary sampling phase of the Survey.

A. Gene Gazlay, former Director, and David H. Jenkins, Acting Director, Michigan Department of Natural Resources; and Carlos Fetterolf, Chief Environmental Scientist, and Dennis Tierney, Aquatic Biologist, Bureau of Water Management, Department of Natural Resources, provided invaluable lake documentation and counsel during the course of the Survey. John Vogt, Chief of the Bureau of Environmental Health, Michigan Department of Public Health, and his staff were most helpful in identfying point sources and soliciting municipal participation in the Survey.

Major General Clarence A. Schnipke (Retired), then the Adjutant General of Michigan, and Project Officer Colonel Albert W. Lesky, who directed the volunteer efforts of the Michigan National Guardsmen, are also gratefully acknowledged for their assistance to the Survey.

NATIONAL EUTROPHICATION SURVEY

STUDY LAKES

STATE OF MICHIGAN

LAKE NAME

Allegan Res.
Barton
Belleville
Betsie
Brighton
Caro Res.
Charlevoix
Chemung
Constantine Res.

Crystal
Deer
Ford
Fremont
Higgins

Higgins Holloway Res. Houghton Jordon Kent

Long Macatawa Manistee Mona Muskegon Pentwater

Pere Marquette

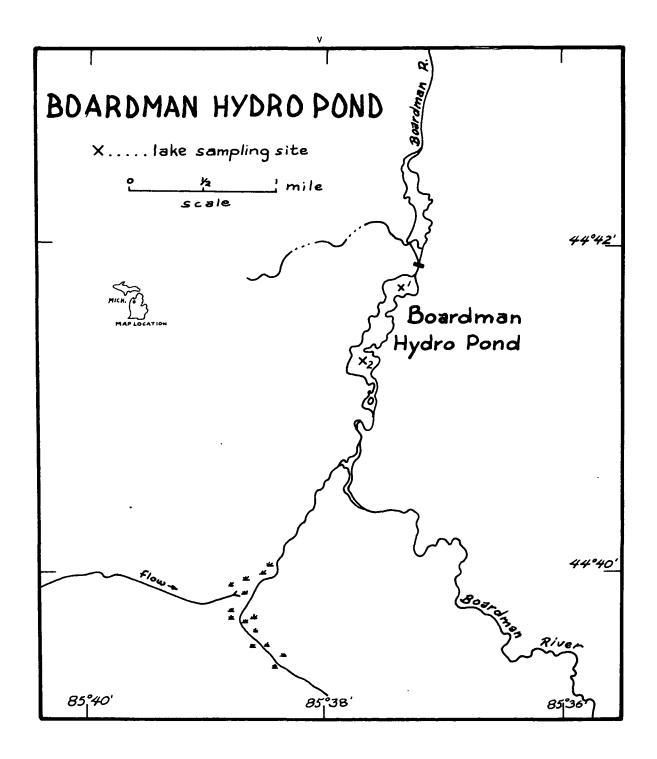
Portage Randall Rogers Pond Ross

1/033

St. Louis Res.

Sanford Strawberry Thompson Thornapple Union White

COUNTY


Allegan
Kalamazoo
Wayne
Benzie
Livingston
Tuscola
Charlevoix
Livingston
St. Joseph
Montcalm
Marquette
Washtenaw
Newago
Roscommon

Genesee, Lapeer

Roscommon Ionia, Barry Oakland St. Joseph Ottawa Manistee Muskegon Muskegon Oceana Mason Houghton Branch Mecosta Gladwin Gratiot Midland

Livingston Barry Branch Muskegon

Livingston

BOARDMAN HYDRO POND

STORET NO. 26A2

I. INTRODUCTION

Boardman Hydro Pond was included in the National Eutrophication Survey as a water body of interest to the Michigan Department of Natural Resources. Tributaries and nutrient sources were not sampled, and this report relates only to the data from lake sampling.

II. CONCLUSIONS

A. Trophic Condition:

Survey data indicate that Boardman Hydro Pond is oligotrophic. Of the 35 Michigan lakes sampled in the fall of 1972 when essentially all were well-mixed, none had less mean total and mean dissolved phosphorus, and ten had less mean inorganic nitrogen; of all 41 lakes sampled, only one had less mean chlorophyll <u>a</u>, and only two had a greater mean Secchi disc transparency*.

B. Rate-Limiting Nutrient:

The algal assay results indicate that phosphorus was the limiting nutrient at the time the sample was collected. The lake data also indicate phosphorus limitation at the other sampling times as well; i.e., N/P ratios were greater than 60/1 on both occasions.

^{*} See Appendix A.

III. LAKE CHARACTERISTICS

- A. Lake Morphometry*:
 - 1. Surface area: 77 acres.
 - 2. Mean depth: 24.8 feet.
 - 3. Maximum depth: >27 feet.
 - 4. Volume: 1,910 acre-feet.
- B. Precipitation**:
 - 1. Year of sampling: 36.8 inches.
 - 2. Mean annual: 37.8 inches.

^{*} Fetterolf, 1973.

^{**} See Working Paper No. 1, "Survey Methods, 1972".

IV. LAKE WATER QUALITY SUMMARY

Boardman Hydro Pond was sampled three times during the open-water season of 1972 by means of a pontoon-equipped Huey helicopter. Each time, samples for physical and chemical parameters were collected from two stations on the pond and from a number of depths at each station (see map, page v). During each visit, a single depth-integrated (15 feet or near bottom to surface) sample was composited from the stations for phytoplankton identification and enumeration; and during the second visit, a single 18.9-liter depth-integrated sample was composited for algal assays. Also each time, a depth-integrated sample was collected from each of the stations for chlorophyll <u>a</u> analysis. The maximum depths sampled were 15 feet at station 1 and 27 feet at station 2.

The results obtained are presented in full in Appendix B, and the data for the fall sampling period, when the pond essentially was well-mixed, are summarized below. Note, however, the Secchi disc summary is based on all values.

For differences in the various parameters at the other sampling times, refer to Appendix B.

A. Physical and chemical characteristics:

FALL VALUES

(11/12/72)

Parameter	Minimum	Mean	<u>Median</u>	Maximum
Temperature (Cent.) Dissolved oxygen (mg/l) Conductivity (µmhos) pH (units) Alkalinity (mg/l) Total P (mg/l) Dissolved P (mg/l) NO ₂ + NO ₃ (mg/l) Ammonia (mg/l)	6.4 10.6 315 7.8 144 0.005 0.004 0.310 0.040	6.5 10.7 319 7.8 150 0.006 0.005 0.318 0.040	6.5 10.7 320 7.8 149 0.006 0.004 0.310 0.040	6.5 10.8 320 7.8 153 0.009 0.007 0.340 0.040
Secchi disc (inches)	96	ALL VAL	<u>UES</u> 138	169

B. Biological characteristics:

1. Phytoplankton -

Sampling Date	Dominant Genera	Number per ml
06/17/72	 Dinobryon Cocconeis Achnanthes Navicula Synedra Other genera 	157 [°] 132 103 52 49 <u>118</u>
	Total	611
09/15/72	 Dinobryon Achnanthes Navicula Fragilaria Cymbella Other genera 	177 170 112 90 69 293
	Total	911
11/12/72	 Achnanthes Navicula Cymbella Cocconeis Synedra Other genera 	80 65 38 29 29 53
	Total	294

2. Chlorophyll \underline{a} - (Because of instrumentation problems during the 1972 sampling, the following values may be in error by plus or minus 20 percent.)

Sampling Date	Station Number	Chlorophyll <u>a</u> (µg/l)
06/17/72	01 02	3.9 1.0
09/15/72	01 02	0.4 1.1
11/12/72	01 02	0.4 0.8

C. Limiting Nutrient Study:

1. Autoclaved, filtered, and nutrient spiked -

Spike (mg/l)	Ortho P	Inorganic N	Maximum yield
	Conc. (mg/1)	Conc. (mg/l)	(mg/l-dry wt.)
Control	0.001	0.278	0.1
0.010 P	0.011	0.278	3.5
0.020 P	0.021	0.278	7.4
0.050 P	0.051	0.278	8.0
0.050 P + 10.0 N	0.051	10.278	27.4
10.0 N	0.001	10.278	0.1

2. Discussion -

The control yield of the assay alga, <u>Selenastrum capricornutum</u>, indicates that the potential primary productivity of Boardman Hydro Pond was quite low at the time the assay sample was taken (09/15/72). Also, the increased yields with increased levels of orthophosphate show that the pond was phosphorus limited (note the lack of yield response when only nitrogen was added).

The lake data indicate phosphorus limitation in June (N/P = 64/1) and November (N/P = 72/1) as well.

V. LITERATURE REVIEWED

Fetterolf, Carlos, 1973. Personal communication (lake morphometry). MI Dept. of Nat. Resources, Lansing.

APPENDIX A

LAKE RANKINGS ...

LAKE DATA TO BE USED IN RANKINGS

		FALL VALUES			ALL VALUES				
LAKE	LAKE NAME	MEAN TOTAL P	MEAN DISS P	MEAN INORG N	500- MEAN SEC	MEAN CHLORA	15- MIN UO		
26A0	HOLLOWAY RESERVOIR	0.062	0.043	1.461	439.375	10.678	9.200		
26A1	CARO RESERVOIR	0.117	0.022	3.835	473.000	11.967	9.500		
26A2	BOARDMAN HYDRO POND	0.006	0.005	0.358	363.500	1.267	6.600		
2603	ALLEGAN LAKE	0.123	0.057	1.168	470.222	20.311	12.600		
2606	BARTON LAKE	0.121	0.086	1.489	456.167	27.800	14.850		
2609	BELLEVILLE LAKE	0.118	0.048	1.420	465.250	28.262	8.200		
2610	BETSIE LAKE	0.025	0.008	0.273	461.667	4.567	7.400		
2613	BRIGHTON LAKE	0.109	0.073	1.015	456.000	44.233	7.500		
2617	LAKE CHARLEVOIX	0.007	0.006	0.230	351.250	3.008	9.240		
2618	LAKE CHEMUNG	0.044	0.014	0.132	404.333	13.483	14.800		
2621	CONSTANTINE RESERVOIR	0.027	0.008	0.910	456.167	39.317	7.500		
2629	FORD LAKE	0.105	0.058	1.536	456.167	14.733	14.000		
2631	FREMONT LAKE	0.372	0.342	1.406	441.667	28.500	14.800		
2640	JORDAN LAKE	0.180	0.144	1.998	427.667	20.517	14.900		
2643	KENT LAKE	0.040	0.015	0.417	455.000	33.944	13.000		
2648	LAKE MACATAWA	0.197	0.120	2.358	477.600	25.600	12.200		
2649	MANISTEE LAKE	0.018	0.010	0.304	451.333	6.317	11.380		
2659	MUSKEGON LAKE	0.087	0.043	0.469	436.444	9.511	14.800		
2665	PENTWATER LAKE	0.027	0.017	0.496	430.667	16.083	14.800		
2671	RANDALL LAKE	0.246	0.183	0.818	457.333	• 27.217	8.020		
2672	ROGERS POND	0.026	0.015	0.183	435.500	8.133	9.600		
2673	ROSS RESERVOIR	0.034	0.021	0.460	465.333	10.383	8.200		
2674	SANFORD LAKE	0.016	0.008	0.307	458.750	13,791	8.300		
2683	THORNAPPLE LAKE	0.042	0.032	1.737	442, 833	14.650	10.800		
2685	UNION LAKE	0.083	0.064	1.252	455.500	15.667	8.200		
2688	WHITE LAKE	0.027	0.019	0.367	417.778	9.211	13.400		
2691	MONA LAKE	0.307	0.241	0.963	451.667	27.783	14.100		
2692	LONG LAKE	0.163	0.148	0.749	418.400	10.067	13.600		

LAKE DATA TO BE USED IN RANKINGS

			FALL VALUES			ALL VALUES			
LAKE		MEAN	MEAN	MEAN	500-	MEAN	15-		
CODE	LAKE NAME	TOTAL P	DISS P	INORG N	MEAN SEC	CHLORA	MIN DO		
2693	ST LOUIS RESERVOIR	0.134	0.093	1.227	462.667	5.583	8.420		
2694	CHYSTAL LAKE	0.009	0.006	ચ•164	380.000	2.986	13.000		
2695	HIGGINS LAKE	0.007	0.005	0.058	268.500	1.043	9.400		
2696	HUUGHTON LAKE	0.018	0.008	0.136	420.833	9.217	8.200		
2697	THOMPSON LAKE	0.043	0.029	0.43 6	407.889	11.967	14.800		
2698	PERE MARQUETTE LAKE	0.032	0.024	0.346	448.667	11.833	8.600		
2699	STRAWBERRY LAKE	0.069	0.050	0.567	419.800	11.117	13.600		

PERCENT OF LAKES WITH HIGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES)

		F	ALL VALUES					
LAKE	LAKE NAME	MEAN TOTAL P	MEAN UISS P	MEAN INORG N	500- Mean sec	MEAN CHLORA	15- MIN DO	INDEX NO
26A0	HOLLOWAY RESERVOIR	46 (16)	43 (15)	17 (6)	57 (20)	60 (21)	63 (22)	286
26A1	CARO RESERVOIR	29 (10)	54 (19)					
						49 (17)	54 (19)	189
26A2	BOARDMAN HYDRO POND	97 (34)	97 (34)	69 (24)	91 (32)	94 (33)	97 (34)	545
2603	ALLEGAN LAKE	20 (7)	31 (11)	31 (11)	6 (2)	29 (10)	40 (14)	157
2606	BARTON LAKE	23 (8)	20 (7)	14 (5)	29 (9)	14 (5)	3 (1)	103
2609	BELLEVILLE LAKE	26 (9)	37 (13)	20 (7)	11 (4)	11 (4)	79 (26)	184
2610	BETSIE LAKE	77 (27)	77 (27)	80 (28)	17 (6)	86 (30)	94 (33)	431
2613	BRIGHTON LAKE	31 (11)	23 (8)	34 (12)	34 (12)	0 (0)	90 (31)	212
2617	LAKE CHARLEVOIX	91 (32)	91 (32)	83 (29)	94 (33)	89 (31)	60 (21)	508
2618	LAKE CHEMUNG	49 (17)	71 (25)	94 (33)	86 (30)	46 (16)	11 (2)	357
2621	CONSTANTINE RESERVOIR	71 (25)	83 (29)	40 (14)	29 (9)	3 (1)	90 (31)	316
2629	FORD LAKE	34 (12)	29 (10)	11 (4)	29 (9)	37 (13)	23 (8)	163
2631	FREMONT LAKE	0 (0)	0 (0)	23 (8)	54 (19)	9 (3)	11 (2)	97
2640	JURDAN LAKE	11 (4)	11 (4)	6 (2)	69 (24)	26 (9)	0 (0)	123
2643	KENT LAKE	57 (20)	69 (24)	63 (22)	40 (14)	6 (2)	36 (12)	271
2648	LAKE MACATAWA	9 (3)	14 (5)	3 (1)	0 (0)	23 (8)	43 (15)	92
2649	MANISTEE LAKE	80 (28)	74 (26)	77 (27)	46 (16)	80 (28)	46 (16)	403
2659	MUSKEGON LAKE	37 (13)	40 (14)	54 (19)	60 (21)	69 (24)	11 (2)	271
2665	PENTWATER LAKE	69 (24)	63 (22)	51 (18)	66 (23)	31 (11)	11 (2)	291
2671	RANDALL LAKE	6 (2)	6 (2)	43 (15)	23 (8)	20 (7)	86 (30)	184
2672	ROGERS POND	74 (26)	66 (23)	86 (30)	63 (22)	77 (27)	51 (18)	417
2673	ROSS RESERVOIR	60 (21)	57 (20)	57 (20)	9 (3)	63 (22)	79 (26)	325
2674	SANFORD LAKE	86 (30)	80 (28)	74 (26)	20 (7)	43 (15)	71 (25)	374
2683	THORNAPPLE LAKE	54 (19)	46 (16)	9 (3)	51 (18)	40 (14)	49 (17)	249
2685	UNION LAKE	40 (14)	26 (9)	26 (9)	37 (13)	34 (12)	79 (26)	242
2688	WHITE LAKE	66 (23)	60 (21)	66 (23)	80 (28)	74 (26)	31 (11)	377
2691	MONA LAKE	3 (1)	3 (1)	37 (13)	43 (15)	17 (6)	20 (7)	123
						-		
2692	LONG LAKE	14 (5)	9 (3)	46 (16)	77 (27)	66 (23)	27 (9)	239

PERCENT OF LAKES WITH HIGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES)

		FA	LL VALUES					
CODE	LAKE NAME	MEAN TOTAL P	MEAN DISS P	MEAN INORG N	500- MEAN SEC	MEAN CHLORA	15 - Min do	INDEX NO
2693	ST LOUIS RESERVOIR	17 (6)	17 (6)	29 (10)	14 (5)	83 (29)	69 (24)	229
2694	CRYSTAL LAKE	89 (31)	89 (31)	89 (31)	89 (31)	91 (32)	36 (12)	483
2695	HIGGINS LAKE	94 (33)	94 (33)	97 (34)	97 (34)	97 (34)	57 (20)	536
2696	HOUGHTON LAKE	83 (29)	86 (30)	91 (32)	71 (25)	71 (25)	79 (26)	481
2697	THOMPSON LAKE	51 (18)	49 (17)	60 (21)	83 (29)	51 (18)	11 (2)	305
2698	PERE MARQUETTE LAKE	63 (22)	51 (18)	71 (25)	49 (17)	54 (19)	66 (23)	354
2699	STRAWBERRY LAKE	43 (15)	34 (12)	49 (17)	74 (26)	57 (20)	27 (9)	284

APPENDIX B

PHYSICAL and CHEMICAL DATA

STORET RETRIEVAL DATE 75/02/04

26A201 44 40 00.0 085 25 00.0 BOARDMAN HYDRO POND 26U55 MICHIGAN

DATE TIME DEPTH FRUM OF						11EP/ 6	ALES		1202 FEET DEP	тн		
	0F		00010 WATER TEMP	00300 DU	UGU77 TKANSP SECCHI	CINDUCTYY FIELD	00400 PH	00410 T ALK CACU3	00630 NU2&NU3 N-TOTAL	00610 NH3-N TUTAL	00665 PHOS-TOT	00666 PHOS-DIS
TÜ	DAY	FEET	CENT	MG/L	INCHES	WICKOWHO	50	MG/L	MG/L	MG/L	MG/L P	MG/L P
72/06/17	14 1	0 0000	18.4	9.6	120	260	8.23	145	0.160	0.030	0.008	0.003
	14 1	U 0015	12.0	9.8		260	8.02	147	0.190	0.030	0.005	0.004
72/09/15	10 0	2 0000			169	308	8.05	158	0.240	0.050	0.009	0.005
	10 0	2 0004	14.1	9.3		305	8.15	156	0.230	0.040	0.008	0.005
	10 0	2 6015	13.0	9.0		305	8.00	158	0.230	0.050	0.014	0.005
72/11/12	09 1	5 0000			169	320	7.80	149	0.310	0.040	0.005	0.004
	09 1	5 0004	6.5	lu.8		315	7.80	149	0.310	0.040	0.006	0.005
	09 I	5 0011	6.4	10.7		320	7.80	144	0.310	0.040	0.009	0.007

DATE FROM TO	ÖF		рертн Геет	32217 CHLRPHYL A UG/L
72/06/17 72/09/15 72/11/12	10	02	0000	3.9. 0.4. 0.4.

J VALUE KNOWN TO BE IN ERRUR

STORET RETRIEVAL DATE 75/02/04

26A202 44 40 00.0 085 25 00.0 BOARDMAN HYDRO POND 26U55 MICHIGAN

						11EP	ALES	2111202 0008 FEET DEPTH				
DATE FROM TO	1 IM OF Day	E DEPTH FEET	OUULU WATER TEMP CENT	00300 00 MG/L	00077 TRANSP SECCHI INCHES	00094 CNDUCTVY FIELD MICROMHO	00400 PH SU	00410 T ALK CACO3 MG/L	00630 N02&N03 N-TUTAL MG/L	00610 NH3-N TOTAL MG/L	00665 PHOS-TOT MG/L P	00666 PHOS-DIS MG/L P
72/06/17	14	35 0000	18.4	10.2	96	260	8.23	144	0.160	0.020	0.014	0.004
		35 0007	13.5	12.2		255	8.40	146	0.210	0.030	0.004	0.002K
72/09/15	09	24 0000			156	315	8.08	155	0.230	0.040	0.010	0.004
	09	24 0004	14.8	9.4		30 ห	8.10	155	0.240	0.040	U.008	0.004
	09	24 0015	14.6	9.4		308	8.10	155	0.240	0.040	0.008	0.005
	49	24 0021	13.0	9.2		316	8.00	154	0.230	0.040	0.010	0.007
	09	24 0027	13.0	8.4		310	7.90	155	0.230	0.060	0.018	0.006
72/11/12	09	35 0000			109	320	7.80	153	0.340	0.040	0.006	0.004
	ŭ9	35 0006	6.5	10.6		320	7.80	153	0.320	0.040	0.006	0.004

DATE FROM TO	ŌF	-	DEPTH FEET	32217 CHLRPHYL A UG/L
72/06/17 72/09/15	09	24	0000	1.00
72/11/12	09	35	0000	0.8J

K VALUE KNOWN TO BE LESS THAN INDICATED

J VALUE KNOWN TO BE IN ERROR